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ESTIMATIOKS AND CONTROL O F  NONLINEAR 
, y * k  YSICAi SYSTEM - - - -  

NASA Grant NSG- 3 5 4  (Supplement 2 ) 
T.C.  Gaw (Prof. M. Aoki)  

The problem under investigation is  a class of adaptive control 
sys t ems .  It is assumed that the sys tem dynamics is governed by 

- -  ax - f ( x , u , t ) ,  
a t  

where x = state var iables ,  and 

u = control. 

The output or  observation y = h ( x )  t noise i s  assumed to be contam- 
inated with noise of unknown probability distribution and the control u 
satisfie s the equation 

The purpose of this project is to find the best  es t imate  of the 
state var iables  x ( t )  under the c i rcumstances  given above. Using the 
c r i te r ion  

,t , 
F [ u ( t ) ,  z(t) ,  t ]  = dt [ k,G2(t) + k 2 u 2 ( t ) ]  + I, { 
and invoking tne invariant  imkdd i i ig  iechiilq-iie, 
a r e  obtained 

where x = s (p re sen t  es t imate)  

u = c ,  

af 
7- . o s  f =  

S 
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To tes t  the a2,plicabi:ity of the a’aove technique, a few computer 
7 7 -  

-1.- U - r J  r ~ i i l  Sc z z d , e .  
s,o:urion of the state var iables  obtained f rom known noise charac te r -  
i s t;c s .  

i n e  solution of Eq. 2. will be compared with the 

O F  SYSTEMS 

I n  the sxxdy of control systems i t  i s  a lmost  cniversally assumed 
that the  behavior of a (continuous t i m e )  control sys tem is  descr ibed by 
2 differential  equation par t ia l  o r  otherwise. 
m a r e  ger,erzl description of control problems has  been investigated which 
does  not involve any differential euqations 2nd at tempts  to reduce the 
problem K O  essent ia l s .  An inquiry was made into the possibility of 

answer  obtained was in the positive a t  l eas t  in the special  case  that 
was  s tcdied.  

which assigns to every pa i r  oi s ta tes  in  the state-fine space the gain 
incur red  in going f rom one s ta te  to the o ther .  
i s f y  the following semi  group condition: 

In this work a different and 

e, LAonslat ing - some of the resu l t s  of control theory into this sett ing.  The 

At the base of this approach l ies the concept of a gain function 

Such gain functions sat- 

wkenzver + < t < t ( s e e  quarter ly  repo’t No. 14) ,  and may be used “ 1 -  3 - 2  
FO define a generalized sys tem which is  not necessar i ly  descr ibable  by 
a differential  equation. Thus a valid and mathematical ly  interesting 
problem i s  the character izat ion of functions satisfying Eq. 1. 
plete solution to this problem wou!d certainly produce a generalized 
maximum principle as a by-product. 

A com- 

The following i s  a f i r s t  s tep i n  
*.L: - 
L A 1 1 3  U L A  LL C I V I L .  

- 7  -3eoi-em: Let X be a locally co:ivex l inear  topological space.  Let  
~t 
on X which is continuous in t is some well defined sense. If 
C, (x, y) is a gain junction ( i . e .  i t  satisfies Eq. 1 ), C (x ,  y )  = 

-_ 
m-- be a one pa rame te r  time group of continuous l inear  t ransformation 

?+2 tl$2 
x) ,  C ( 0 , x )  is upper s e m i  continuous in  x and 

O,t C 
- -  
whenever t _;c 0 C o t  n 

( o ~ n ) - 9 - ~  unless  x-0 then the filnction 
n 11 

C o ,  ;(‘, * ) i s  convex. 

charzcter izat ion of C ( 0 ,  . ) which i n  the special  case  when X i s  a 

Bznazh space and T, i s  cor,tinuous i n  t uniformly on X reduces  to: 

Fu r the rmore  i t  is  possible to obtain a complete 

0, t 
L 

f f‘ 

LJ 0 
. C0,:(0.x) = S L q j  1 C(U(t)  d t :  x = A>: i- u,x(O) = O&(t) = 

for  some  c0I;vex function c I- ) on X and a continuous l ixear  operator  A .  
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IVe consider the  systzm S shown i n  F i g .  1 

F i g .  1. The sys tem S . 

T .  is a single-in~~t single-oEt?ut  feedback sys tem.  The system i s  
c-ai-acierized by foi lowing o?erator equations. 

Y.. e = c -  

(1 )  
- 

C Y =  ~e 

y = K u  , 

where F ar-d I< aye o p e r a t o r s .  

( 1) m a y  be writ ten as 

(1 +- K F j  e = u 

y = K'e 

We shzll introduce some notations before proceeding to the 
p r  ob!em s 

1. X : 2 rez i  515ei . t  spzce, < .  , . > wil l  denote the scalar 
product  in 2, and I I .  II corresponding norm.  

2 .  $ .e t  x be a r e a l  vzlced function defined on [ 0, a). Let  us  call 
P- the projection operator  such tila'; 

* 

( P T X ) ( t )  = x ( t )  f o r  0 F t  < , T  

= G  e:sewhel-e. 

3 .  I-I : 211 extension of H such thaz e 

2 )  ~ h c  elLZents  of I-: z r e  fcilctioris defined on G ,  so) 
e 
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c . 

< x, y >- - 3 x,, yo > -1- - -  x, 'J E 1-1 
* e A -  

T h e  main resu l t s  ob'cziaed s h t l l  he stzted as ioilowing t h e o r e x s  

Consider the operztor  Z q .  2 

- '..- 
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1. P W M  Linear Sampled Data System 

I t  is assumed that the plant is descr ibed by a se t  of l inear  
differential equations of the fo rm 

2 = A x  t b u  - -- - 

- b = col ( b  l ’ . ” ’ b n )  

u = scalar  

The state of the system is assumed to be sampled once every second 
(on a normalized time scale) ,  and the control function u( t )  is given by 

u ( t )  = rgn un 
n - l t  Juri I < t < n  - (0 

where the u n  n = 1, 2,  . . . a r e  constants satisfying 1 [ < I for all n . 
The optimal control problem i s  stated in the following 9 orm:  

Given that the sys tem i s  in a n  initial state x a t  t = 0,  find 4 
a control  sequence ul, uz, . . . , uN which brings the system to the 

or igin in a number of sampling periods,  N ,  which i s  less than o r  
equal to the nunber of sampling periods required with any other control 
sequence. 

algorithm: 
The following definitions a r e  used in the discussion of the 

-(i-1) A - A  r .  w. ( l )  = e - [ e - - ~ ] b  - 
-1 -1 

w. (ui)  sgn ui, I ui I - < 1, i=l ,  . . . , N} 
-1 

1= 1 

= the se t  of s ta tes  f rom which the origin i s  reachable 
in N samplings per iods or  l e s s .  

- a -  



2.  Optimal Control Algorithm 

The algorithm is k 1 sed on the following conjectured theorem. 

Theorem: Under the conditions of the problem stated above,  
the se t s  6 ,  C E ; ~  , N =  n, n + l ,  . . . definzd by 

C N =  { c / the  s e t  of indices { i / i  - < N, [ < K ,  d -  C >I < 1) has  cardinali ty - > n }  

have the proper  tie s that 
- 

(a )  C N  is  homeomorphiG to R 

homeomorphism f:  5-s given by 
N 

i= 1 

for  every N > n with the N - 

~ ( 2 )  = - 1 w. ( s a t  < n, c > )  sgn < Ti, c > - -  - -1 

(b)  for any x E R N  there ex is t s  a control sequence -0 
ul, UZ’ . 
initial s ta te  x to the origin in N sampling periods,  

which i s  given by u = sat  < g. ,  f i =  1,. . . , N 
-1 ( c )  f, and f a r e  piecewise differentiable. Some remaining 

detai ls  of the proof of t h i s  theorem a r e  being worked out 
and i t  is expected that the ma te r i a l  will be submitted for  
publication in  the near  future.  

. , U N  which brings the system f rom the 

-1 -0 

(5,) > i 1 

of the system, the basic procedure 
Rn+ 1, . . . to used in  this algorithm i s  to examine successively Rn, 

determine whether x belongs to these se t s ,  stopping a t  the f i r s t  N for 4 which x E R N .  This N r ep resen t s  the minimum number of sampling 
p e r i o d A o  bring the sys tem to the origin. To determine whether x 

in % for  a fixed N, the algorithm seek.s a solution of the equation 

3 ,  Given the init ial  state,  

i s  4 

f ( c )  = x - 0  - -  
with - c E$. 

solution of a se t  of nonlinear equations. 
i s  increased by one and the procedure i s  repeated.  

This i s  accomplished using standard techniques for the 

If a solution i s  not found, N a 

If a solution, 

CN, i s  found, then an  optimal control is given by 

i = l ,  . . . , N. 

The procedure descr ibed here  has  not been tested in pract ice .  
However, an equivalent procedure involving a m o r e  complicated function 
f was examined using a second-order sys tem with initial s ta tes  less 
than o r  equal to 20 sampling periods f r o m  the origin.  
putation t imes  for  initial s ta tes  picked a t  random =ere  of the o rde r  of 

Typical com- 
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.4 to 5 seconds o r  l e s s  on an  IBM 7 0 9 1  computer .  The authors  expect 
to obtain considerable computational experience with this algorithm 
during the next few months.  
p rocedure ,  a s  compared with the one for which compiitation t imes  were  
quoted, would lead one to suspect that these times could be reduced by 
a factor  of two o r  m o r e .  The actual t imes  obtained will be reported in 
the next p r o g r e s s  r epor t .  

The relat ive simplicity of the p re sen t  

REAL-TIME IDENTIFICATION O F  TRANSFER 

NASA Grant  NsG- -354  (Supplement 2) 
K . Y .  Wong ( P r o f .  E. P o l a k )  

A new method of real- t ime identification of a t ransfer  function 
under normal  operation with noise disturbance is discussed.  
i s  stated and a summary  i s  given of the w r i t e r ' s  previous resu l t  in  using 
testing function to convert  the problem of estimating the coefficients of 
a different ia l  equation into one of estimating the coefficients of a n  alge- 
braic  equation. 
var iables  to obtain a consistent es t imate  of the des i r ed  pa rame te r s .  It 
is shown that the solution can  be re-wri t ten into a recurs ive  form,  en- 
abling the es t imates  of t h e  pa rame te r s  to be up-dated. The optimal 
shape of the testing function with respec t  to a suitable cr i ter ion is also 
discus  sed .  

The problem 

An outline is also given of the use of instrumental  

1. Problem Statement 

Assume that the input u ( t )  and the output V(t) of t ime invariant 
sys tem obey the differential equation: 

However, V ( t )  cannot be observed, but v( t ) can  be measured ,  where 

v ( t )  = V ( t )  + e ( t )  , 

e ( t )  is a stationary noise process  with z e r o  mean (not  necessa ry  white 
noise).  We as sume  that the variables v( t ) and u( t )  have been observed 
over some interval  of t ime which we then divided into subintervals of 
length T .  The problem is to es t imate  the coefficients a2,  al, ao, bl . 

A second-order sys tem is chosen for  convenience of i l lustration; the 
theory that follows can be trivially extended to higher o rde r  sys t ems .  

Le t  g ( t )  be a continuous function such that 
* g ( 0 )  = g ( l ) ( O )  = g ( 2 )  ( 0 )  = g(T)  = g (1 1 ( t )  = g ( 2 )  ( T )  = 0.  

The function g ( t )  will be called a testing function. 
s ides  of Eq. 1 by g ( t )  and integrating f rom z e r o  to T, we get, 

Multiplying both 

::: j 
g( ' ( t)  denotes the j th  derivative of g ( t ) .  - 

-10- 



Equation 3, af ter  integration by pa r t s ,  gives 
T T 

d 2 ) ( t ) v ( t )  dt  t a l  -$ I ) ( t )  d t  + %i g( t )v( t )d t  tn/ j l ) ( t ) a ( t )  d t  
0 

T 2 

0 j = o  

”2 

= g ( t ) u ( t ) d t  + (-1) j aj lT g(J)( t )  e ( t )  dt .  

Note that the integrals  
m 
1 i g(j) ( t )  v( t )  dt, 

)O 

and 
rn 
1 

[ g ( j )  ( t )  u( t )  dt, 
’0 

c a n  easi ly  be computed and that 
2 

j = 0,  I, 2, 

j = 0, 1, 

is the disturbance quantity. 
function and integrating from 0 to T can now be repeated on the 
observed data  v( t ) ,  u( t ) ,  
. . . . . . . . . and so  on. 
intervals  of integration. 

The p rocess  of multiplying by a testing 

for t in the t ime intervals  [ T, 2T]  , [ 2T, 3T]  

Let  u s  define 
These will be r e fe r r ed  to as the f i r s t ,  2nd, e tc .  

’ x = A (-l)JiT g(J)( t )  v(t) d t  j = 0,1 ,  2 
k j 

m 

-1 1- 



4 1 g(t) u( t )  dt yk 
0 

The index k in  Eq. 4 r e f e r s  to the interval  of the integration. 
The following se t  of algebraic equations i s  then obtained. 

r 1 7 -  

~I 

j;20 x2 1 x22 " 2 3  

1 I 1 I 

I I 1 1 

I I I 1 

"N3 - N1 X N 2  X XNO 

I n  symbolic mat r ix  notation, Eq. 5 can  be wri t ten as 

Define 

x 9  
--k 

- 

xk! kl 

*" k3 

t 

'€1 1 

.I. 

Note that E(x e . ) #  0;  k = 1, 2 , .  . . N; j = 0, 1, 2 
kj J 

The problem of estimating the coefficients of the differential Eq. 1 is 
t ransformed into finding a s ta t is t ical  es t imate  of - a in  Eq. 5. 
_. 
.c -,- 

"E" cenotes expectation. 

-12- 



2. U. 3: I ~ s t r n m e n t 2 l  Variables to OStzin 
~ - -. 

C c z s i s t e nt E s t im a t e s 

Suppose we generzte a vec to r  i n s t r c x e n t a l  stationary stochastic ------ 
p l u L G ; 3 ~  { z ,  1 where - *< 

LZk3i 
and li i s  the timing index, such that 

w5ere z is a vector with elements ( z  z . zNj)] and E is the 
t r a n s p o s e  o i  E . 

- hTj 1j' 2j '  ' - N  
-N' 

and 

where x is  the i t h  column vector defined by the ma t r ix  X in  Eq. 5 .  - hTj N 
1, 

;\;ow use the es t imator  2 N 

where 

i 7 0  11 9 2  

" 20 "21 "22  z =  N I l  I I 

I I 

Z IY 2 N1 LlNO Z 

Y N  ( 9 )  

"23 
I 

I 

Z N 3- 

1 T -1 1 T Therefore  = a t  ( pJ - z, XN1 ( j p N  E ) .  "N - -N 
By Slutsky's Theorem [ 13 

[ 1 ] S. Wilks, Mathematical  Statistics John Wiley and Sons, Inc. New 
York, (19521, p .  102. 
>:< 

~ ~ ~ ~ i ~ ~ l  A denotes a l imit  i n  probability. 
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where  x : -  w 2 s  defiried in  Zq.  6 ,  and it i s  assumed that the 4 x 4 square 

m-zirrix h a  5 finite corr.?cnents; and 
- A  

) = 0 ;  ( h )  p!im(z 3- T~ i 

A -h L., t re iore  > plirn a = a . If the noise p rocess  e ( t )  i s  white, the asymp- 
3 -  

2 
3 - 1  2 c-1 (11) 0- x zx z z  xz Lotic variance of a. >*as Seen proved to be N 

where C , C , C a r e  4 x 4 square  m a t r i c e s  defined similarly as  

i n  ~ q .  10 and 0-2 = E e ,  . 
If e ( t )  is not white, an asymptotic expression for the var iance 

of a car, s t i l l  be obtained but i t  is  m o r e  complicated thar, Eq. 11. The 

measc rab le  output v(t)  oi Eq. 1 i s  cor re la ted  with u( t ) ,  but u( t )  is 
independent of e (  t ) ;  hence a n  obvious way to generate  the instrumental  
var iable  p rocess  is to der ive  i t  f r o m  u( t ) .  

zz zx xz 
I 

K 

N 

3 .  Xecursive Est imate  

Let xx+ 1’ ZN+ 1’ %+ 1 
be partiLioned as follows 

- 
xN+ 1 - 

I .  I 

- I ’ -  

I 

- I ’ -  I XS+ 1 xx+ 1 1 xxo _ _ _ _ _ _ _ - _ - - - - -  phl, 0 Xn.t:, 1 Xxtl, 2 xxtl, 3 



- T: y*;ls I.,,*,- uLLil shown that  t h e  es t imator  a in Eq. 9 obeys the foilowirig 
N r ecu r s ive  relation: 

T, is a sca l a r .  
A T - 1  with Px = ( Z x  sT) . Note that (1 t mN+l PN q nt1 

4. Optimal S:-.ape of the Testing Function 

For a functional of optimality of the testing functions, with T 
given, we chose 

r-T rT 
Rs ( s - t )  g ( t )  g ( s )  d t  2 s  

* 
r T  r T  p(T) = 

R n  ( s - t )  g ( t )  g ( ~ )  d t  d s  
10 4 

where i?. ( t )  = autocorrelation function of V ( t ) ,  and 
S 

X ( t )  = autocorrelation function of e ( t ) .  n 

Both R - ( t )  and 2 ( t )  a r e  assumed to be known. We shall  now show how 

to choose a continuous iimction g ( t  j that maximizes  p(T) subject t~ the 
b o u ~ d a r y  conditions of Eq. 2 .  

5 n 

Case  A: R n ( t )  = d ( t ) ,  i . e . ,  e ( t )  i s  2 white-noise p rocess .  

It is  well known that g ( t )  maximizes  the ra t io  (without boundary con- 
Zitions) 

-15- 



if and only i f  it  sa t i s f ies  the following integral  equation: 

Rs(S-t) g(S)  d s  = A m a x  g ( t )  9 (15) /gT 
where Arr,ax i s  the maximum eigenvalue of Eq. 15. If the maximization 

of the rat io  in Eq. 1 1  is subject to h boundary conditions, then the max- 
imum of the rat io  in Eq. 14 p ( T ) ,  by the Courant mini-max l emma [ 2 ] , 
sat isf ies  the relation 

< A(T) < max, A h t l .  - - 
where A i s  the (h t1 ) s t  largest  eigenvalue of Eq. 15. 

i s  difficult in pract ice;  hence, approximations in L a r e  used. Let  

h t l  
Solution of the integral equation (Eq .  15) b methods 

M M 

where 

[ O,T 3 With 
2 where {+i ( t )  } is a complete or thonormal  basis  for L 

this  s e r i e s  expansion of % ( s - t ) ,  the finding of an  approximation 

solution of Eq. 15 with o r  without constraints  of Eq. 2 on g ( t ) ,  leads to 
a ma t r ix  eigenvalue problem. 

r a t io  of polynomials in w , and i f  { +i( t) } a r e  chosen to be sine and 

cosine functions, 

method of complex variable theory. 

T, since then i t  would be possible to make a better choice of T; un- 
fortunately p ( T )  can  only be computed for  a range of T by repeatedly 
solving Eq. 15. 

can  be easi ly  obtained as functions of T without solving the integral  
equation. 

If the Four i e r  t ransform of R ( t )  is a 
S 2 

can be computed readily by the residue 
then Yij 

It would be desirable to know p ( T )  explicitly as a function of 

On the other hand, upper and lower bounds for  hmaJT) 

It has  been proved by Bellman and Letter [ 3 ] that 

[ 2 ] R .  Courant and D .  Hilbert, Methods of Mathematical Physics,  
Interscience (1953), p. 31. 

[ 3 1  R .  Bellman and R. Latter,  "On the integral  equation 

Af(x)  =a K(x-y) dy ,  I '  Proc .  h e r .  Math. S O C . ,  3, pp. 884-891 (1952). 
a 
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In  par t icular ly ,  i f  R ( t )  i s  a function which dec reases  monotonically for 

I tl t cc the right hand side of the inequality (Eq .  18) reduces to 
S 

m 

2 [' R s ( t )  d t  . 
' 0  

2 When the Four ie r  t ransform of R ( t )  i s  a rational polynomial in a ,  

ce r t a in  necessary  conditions, as well as some sufficient conditions for 
the location of the z e r o s  and poles of the Four i e r  t ransform of R ( t ) ,  

have been developed to ensure the monotonicity of R ( t ) .  

S 

S 

S 

Case  B: When %(t) f 6 ( t ) ,  the optimization problem in Eq. 13 

c a n  be solved by expanding Rs( s - t  ) and % ( s - t )  into s e r i e s  of sine and 

cosine t e rms ,  and the problem a g a i n  reduces to a ma t r ix  eigenvalue 
problem. 

5. Conclusions 

The method of identification outlined in this r epor t  can  be used 
in sys tems under normal  operation condition and i t  can update the es t i -  
ma te  easi ly  when new data a r e  received. Fu r the r  work will be ca r r i ed  
out choosing a n  optimal interval of integration and an optimal s e t  of 
instrumental  var iables .  

DECOMPOSITION O F  LARGE SYSTEMS 

NASA Grant N sG- 354 (Supplement 2) 
P. Varaiya ( P r o f .  L.A. Zadeh) 

A basic problem in nonlinear programming is the following: 

Maximize {f  (x) I g ( x )  > 0, x > 0 } N P  - - 
where x E E?, g: En - E m i s  a differentiable mapping, and f is a 
real-valued, differentiable function. Necessary conditions for the solu- 
tion of the N P  problem were f i r s t  formulated by Kuhn and Tucker [ 1 ] . 
Their  resu l t  essentially consis ts  of a non-trivial extension of the 
c lass ica l  theory of Lagrange multipliers.  

[ 1 ] H.W.  Kuhn and A.W.  Tucker,  "Nonlinear Programming,  ' I  P r o -  
ceedings of the Second Berkeley Symposium on Mathematical  Statistic s 
and Probabili ty] Berkeley and Los Angeles, University of California 
Press,(1951),  pp. 481-492 . 
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Some ef for t  [ 2 ] has sirlce been devoted to extend the K.T 
resu l t s  to problems where the variables range over m o r e  general  
spaces  o r  a r e  subject to m o r e  general  constraints .  
e r e d  the following problem: 

We have consid- 

Maximize { f ( x )  I g(x) E ny, x E R } P 
where X and Y a r e  r e a l  Banach spaces ,  x E X ,  S2 C Y is  an a rb i t r a ry  
s e t  and Q y  c Y is a closed convex se t .  
a r b i t r a r y  Frechet-differentiable functions. The necessary  conditions 
which we obtain a r e  very analogousb those of Kuhn and Tucker and a r e  
based on the well known geometric fact  that two disjoint closed convex 
s e t s  
hyperplane. 
theoretical  aspec ts  of optimal control and shows the essent ia l  s imilar i l ty  
between the s t ruc ture  of problem P and those of optimal control.  Thus 
the necessary  conditions for the solution of problem P then gives us  
( local)  maximum principles for both d iscre te  - -  and continuous - -  time 
optimal control problem. Moreover,  in the case  of d i scre te  t ime 
problems,  we can a s sume  that the s ta te  vector and the control belong 
to any r e a l  B-spaces.  This allows u s  to obtain necessary  conditions 
for the solution of stochastic discrete  t ime optimal control problems.  

value o r  game-theoretic problem. This viewpoint helps us  to develop 
techniques for the solution by decomposition of some la rge  nonlinear 
programming problems.  
appear  in  the Fall issue of the Control Section of SIAM Journal .  Most 
of these r e su l t s  will be published soon as an  ERL Report .  In the near 
future  we hope to obtain m o r e  algori thms fo r  the prac t ica l  solution of 
these problems and extend the theory to c a s e s  where we have a vector- 
valued o r  "minimax" type cost  function. 

g: X-Y a r d  f :  Y-Reals a r e  

one of which i s  compact, can be s t r ic t ly  separated by a closed 
Such a general  viewpoint a lso lends insight into some 

F i n a l l y  we show that the problem P i s  re la ted to a saddle- 

Some of these decomposition resu l t s  will 

A NEW ALGORITHM FOR A CLASS O F  QUADRATIC PROGRAMMING 
PROBLYC,MS WITE APPLICATION TO CONTROL + 

NASA Grant  N s G -  3 5 4  (Supplement 2)  
M. Canon ( P r o f .  E .  Po lak )  

An algorithm i s  given which can be used to solve the following 
optimal control problems for  l inear d i scre te  t ime sys tems:  minimum 
energy,  minimum time, and minimum energy plus t ime.  Each of the 
optimal control problerris i s  reduced to solving a simple quadratic 
programming problem ( Q P P )  or  a finite sequence of such problems.  A 
new algorithm i s  given for solving the QPP,  and computational resu l t s  
a r e  included. 

[ 2.1 K . J .  Arrow, L. Hurwicz, and H. Uzawa, Studies in Linear and 
Nonlinear Programming,  Stanford University P r e s s ,  Stanford, Cal- 
ifornia, (1958) . 
*Thi s  paper will appear in the SIAM. Journal  on Control, Sept. 1965. 
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Many algori thms a r e  available in the l i t e ra ture  for solving the 
minimum time problem [ 1 -  3 1  
problems [ 4, 5 I ,  
computing optimal controls in a feedback mode because of the large 
computation t imes involved. 
s iderat ion of these problems i s  in decreasing the computation t ime.  

as well as quadratic programming 
but in most  c a s e s  these algori thms cannot be used for 

The p r imary  justification for fur ther  con- 

PAM sample data system 

Let X be a d iscre te ,  t ime invariant sys tem descr ibed by the 
l inear vector .difference equation 

where x E En i s  the s ta te  of X a t  time k, A i s  an  nx  n constant 

nonsingular matr ix ,  b E E" i s  a constant vector ,  and the sca l a r  input 
\ i s  constrained in magnitude by - 1 < u 

We a s s u m e  a single input in o rde r  to symplify notation. 
input sequence ul, uz, . . . , \ = uk , it  is assumed that the energy supplied 

to the sys tem X i s  given by 

-k  

< 1. Note that no difficulties 

U k c  E ~ ,  r < n. a r e  encountered for the multiple input case ,  i .  e . ,  Nhere - 
- k -  

F o r  a given 

i= 1 

Given x the initial s ta te  of X, we can  i te ra te  Eq. 1 and 
e x p r e s s  x and d?k control  sequence {u - j= l ,  2, . . . , k} : 

-k j' 
k 

i= 1 

[ 1 1 Wing, J .  and Desoer ,  C.A. ,  "The Multiple Input Minimal Time 
Regulator Problem", IEEE Trans .  on Automatic Control, Vol. AC-8, 

[ 2 ] Whalen, B.H. ,  "On Optimal Control and Linear  Programming,  
I R E  T r a n s .  on Automatic Control (Correspondence) ,  Vol. AC-7, 

[ 3 1 Tou, J . T . ,  "Optimum Control of Discre te  Systems Subject to Sat-  
uration, "IEEETrans.  on Automatic Control, pp. 88-89, Jan .  1964. 

[ 4 ] Beale, E.M.L. , ' I  On Quadratic Programming", Naval Res .  Log. 
Quar t . ,  6, pp. 227-244, Sept. 1959. 

[ 5 ] Wolfe, P . ,  "The Simplex Method for  Quadratic Programming,  
Econornetrica, 27, pp. 382-398, 1959. 

NO. 2, pp. 125-136, 1963. 

pp. 45-46, 1962. 
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Definition: A control sequence s, of length k, is said to 
belong to the constraint  se t  S2 i f  u. I < 1,. i =  1, 2, , . . , k. 

1 -  

Problem I. Minimum Energy Problem 

Given the initial state x of X, a n  integer N E (1, 2, . . . }  , and -0 
a des i r ed  te rmina l  s ta te  z 
minimizes  

E En, find a control sequence uo which -N -N 

N 

i= 1 

subject to the n t N constraints  

xN(z0' FN)  = (4) 

-i  Let ri = A b, i=l, 2 , .  . . , N, then Eq. 4 can be writ ten as - - 
A 

N 
N ri u. = (A- xN - x o )  = v N .  - 1  

i= 1 

N, and zN a r e  given, v Since x 

energy problem can  be restated in  the following equivalent form : 

is known and hence the minimum - 0' - - N  

minimize J( UN) ( 6 )  

subject to (7) 

I t  i s  eas i ly  shown that if the constraints,  Eqs. 7 and 8 admit  a t  l ea s t  
one solution, then the minimum e n e r g y  problem has a solution. More 

precisely,  i f  we le t  % = { 

Problem I ex is t s  iff  yN e RN. 

N 

i= 1 
r .  ui:  :N E S2 } ,  then a solution to 
-1 
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Problem 11. Intercepting a Moving Targe t  in Minimum Time 

Let z N  c E ~ ,  N=I, 2, . . . , represent  a moving ta rge t  a t  t ime N. - 
Given the init ial  s ta te  x 
a control sequence u 

of X, and the ta rge t  { z N :  N=l, 2, . . . } , find -0  
E S2, of minimum length N, such that - N  

XN(X0' YN) = :No 
v = (A"x - zo), -i  -i 
smal les t  integer  

As in  Problem I, define r.  = A-i b and 

i=l, 2, . . . . 
N such that 

-1 
An equivalent formulation is: find the 

N 
r i u i  = YNP 

i= 1 

Note that  a solution to this problem exis ts  iff v 

integer  N. 
the sma l l e s t  N for  which Problem I has a solution. 

for  some finite - N E  RN 
Clearly, a solution to Problem I1 can be obtained by finding . 

Problem III. Minimum Energy Plus  Time 

Given xo and the ta rge t  state z Q En a t  t ime N, n=l, 2, , . . , - - N  

find a control  sequence uo which minimizes -N 
N 

Q(uN,N) = a N +  1 u i ,  r u > o  
i= 1 

subject to the constraints  xN (zo,  uN) = z As before, this 

problem is reducible to the following: find a control u o  which minimizes  

and uN c S2. 

N - N  

-N - 

Q(uN, N ) ,  subject to the constraints  vN = ri yN E 0. It is eas i ly  
i= 1 

shown that this problem has  a solution i f f  vN E R N  for some N, and, 

fur thermore ,  that a solution can be obtained by solving, sequentially, 
Problem I s tar t ing with N=1, N=2, etc.  

Problem IV. InterceDtine a Moving Target  on a SubsDace 

In some cases  i t  i s  not required that the sys tem state  agree  
with the ta rge t  state in  all coordinates; e. g . ,  i t  may be required that 
the system state  and the ta rge t  agree  in position and velocity. In gen- 
e r a l  i t  may be required that a l inear  function of the system state  agree  
with a l inear function of the ta rge t  state. 
as follows. 

W e  can formulate this  problem 
Let H be a n  s y n matr ix  and le t  {zN:  - N=1, 2, . . . } be the 
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. 

. 

t a rge t .  The problem i s  to find a control sequence u a $2, of minimum 

length N, such that 
- N  

N 

i= 1 

D e f ining , 
h r. = H A"'b - 
* - .  i 

-1 i=l, 2, .  . . 
V. - H (z i -Azo) .  
-1 

An equivalent formulation is to find the smal les t  integer N for  which 

N 

i= 1 

1 1 . 1 ,  i = l , 2  ,..., N. I uNt l - i  

I t  i s  c l ea r  that Problem I V  is of the same form a s  Problem 11, and, 
therefore ,  a solution can  be obtained a s  descr ibed in Problem XI. 
however, that i f  the target  state and the sys tem s ta te  need only agree  
in  position, then the problem reduces to the time optimal control of a 
f i r s t  o rde r  system. 

Note, 

Analysis We have shown that solutions to the four problems 
stated above can be obtained by solving sequentially Problem I. 
fore ,  we shal l  l imit  our discussion to this problem, and s ta te  briefly 
how a solution i s  obtained. F o r  a proof of the theorems and lemmas  
which follow, the r eade r  i s  re fe r red  to reference [ 6 ] . 

0 .  

There- 

Lemma 1: If u is the solution to the minimum energy problem 
n - N  

(Problem I ) ,  then there exists a constant vector c - c E 

u? = sa t  < r  c > , i=l, 2, . . . , N.* 

energy problem exis t s  i f f  v 

have : 

such that 

1 -i' - 
We have previously remarked that a solution to the minimum 

t RN, consequently, using Lemma 1 we -N 

~- 

[ 6 ] Canon, M.D. and Eaton, J.H. , "A New Algorithm for a C las s  of 
Quadratic Programming Problems with Application to Control, p re-  
sented a t  First International conference on programming and Control, 
to appear SIAM Journal  on'Control, Sept. 1965. 
" s a t y e  y i f  I y l z 1 ,  = y / I y I  if I y l  > 1  

A 
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Theorem 1: Each point vN E R N  can be represented in the form 

i= 1 

for some vector c E E". 
The minl'mum energy problem has been reduced to finding a 

vector c - E En such that vN - = tN(z ) ,  i . e . ,  inverting f -N ' Note that 

f We 

next show that i t  i s  possible to r e s t r i c t  the domain of iN, to a subset 

of En, in  such a manner a s  to make f -N 

maps  En onto R N  , however, the mapping i s  not one to one. - 

a bijective bicontinuous function. 
Since we wish to find an algorithm for determining c - given YN ( O r  

determining if a solution exis ts ,  i . e . ,  if v E R ) the continuity of 

C N  is of major importance.  
- N  N -1 

Definition: F o r  each c E E", l e t  I N ( c )  

index s e t  such that i f  i e IN(c - ) then I < ri, - -  c > 15 1; I N ( c  ) denotes the 

complement of this s e t  re la t ive to {1,2, . . , N } . 
f ( c )  can  be writ ten a s  

(1, 2, . . . , N }  be an - 

Using this notation 

- N  - 
r .  r.,: > g N ( c )  = 1 r .  - I  s a t < r i , c  - -  > t 5: - 1  -1  

i r  IN( E i€IN(C) 

Definition: Let CN C En be the s e t  of all points c e En for 
n which the vectors  {ri : i E iN(s) } span E . 

I t  is now possible to prove: 

Theorem 2: 

Using the continuity of g N  
The mapping t N :  CN-RN i s  a homeomorphism. 

, a finite s tep algorithm has been 

developed for inverting f [ 6 1 .  If there  is no solution to v - N = t N ( s ) ,  . 

then the algorithm te rmina tes  in  a finite number of s teps .  Thus, it can  
be determined in  a finite number of s teps  whether vN - e RN, and, as 

a resu l t ,  solutions to Problems I1 through IV can be obtained in  a finite 
number of steps.  

optimal controls  of length 20 sampling 
for  a fourth o rde r  sys tem (i.e., f i  6 E ). 

- 1  

- N  

To tes t  the computational efficiency of this algorithm time 
er iods  o r  l e s s  were computed B Using a n  IBM 7090 computer 
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the maximum computation time was 0.4 seconds. In solving the minimum 
t ime problem for a n  optimal control of length 20 sampling periods the 
minimum energy problem i s  solved 20 t imes .  Thus for  N = 20, 
Problem I can be solved in approximately 0.07 seconds. 

A NEW APPROACH TO THE SOLUTION OF QUADRATIC 
PROGRAMMING PROBLEMS 

NASA Grant NsS- 354 (Supplement 2 ) 
M. Canon (P ro f .  E. Polak) 

All the algorithms presently available for solving quadratic 
programming problems (QPP) sha re  one common feature,  viz . ,  a t  each 
s tep  of the algorithm the boundary conditions a r e  satisfied and the value 
of the cost  function i s  reduced. 
be reduced for  solving a s e t  of simultaneous nonlinear equations. A 
finite- s tep algorithm has been developed for  solving these equations. 

In this note we show how the Q P P  can 

The Quadratic Proerammine  Problem 

0 0  0 
n Find n r e a l  variables x l ,  x 2 ,  . . . ,’ x (represent ing a n  n-vector 

0 x )which minimize - 
J(x) = C x, - Q x  - > t < x, - -  d > (1) 

subject to the constraints  

A x =  - b - 
x i ?  0, i=l, 2,. . . , n ( 3 )  

Here Q is a symmetr ic ,  positive semi-definite n x n mat r ix ,  A is an  
m x n mat r ix  of full rank, d E E” and b e Em a r e  constant vec tors .  
Let N(Q) and N(A) denote,-respectivefy, the null space of the opera tors  
Q and A. It i s  assumed that N ( Q ) n N ( A )  = { O }  , the z e r o  vector.  

Definition: An n-vector x is said to belong to the constraint  
CI - ~ ~~~ . 

0, i=l, 2 , .  . .,n. s e t a ,  i f  x i l  

Definition: Let Ct be the image of the constraint  s e t  S2 under 
the l inear  transformation A, i. e . ,  (3 = {A x :  x e S2 } . - -  

In a straightforward manner one can prove the following: 

Lemma 1: If b e a , then the Q P P  has a solution; fur ther-  - 
more ,  i f  m N ( A )  = (0) - , then the solution is unique. 
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Necessary and Sufficient Conditions for Optimality 

Following Kuhn and Tucker [ 1 ] we introduce a sca la r  valued 
function H(c, XJ defined by 

where c E Em, J(x) - and A a r e  defined above. 

denote the ith component of the par t ia l  derivative of H with r e spec t  to 
z ,  evaluated a t  5 = 50 and ,c = so. After a slight modification of the 
Kuhn and Tucker theorem [ 1 ] , i t  is possible to prove Theorem 1. 

Theorem 1: A necessary  and sufficient condition for xo to be 

a solution of the QPP i s  the existence of a vector E E Em such that 

H ( c 0 5 )  = < C, A x > - J(x), 

Let (Hzo )i, i=l, 2, . . . , n 

0 

(i) If xp = 0, then (Hxo)i 5 0 ( 4 4  

( i i )  If xi 0 > 0, then (Hzo)i  = 0 

0 It tu rns  out that Eq. 2 implies H ( E ~ , ~ ~ )  = max H ( q  , z ) .  
Z €  n 

The Vector-Valued Function f 

For  e a s e  in  explanation, let  us assume that Q is positive def- 
inite. 
the m o r e  general  assumption N(Q)/\N(A) = {cf . 
follows: 

A slight modification of the following ar ument is necessary  under 

Let  g be the vector function mapping Em into Sr defined a s  
to each c o  E Em, g(co) i s  that point in  R which sat isf ies  Eq. 4,i.e., - -  

(5)  
0 

H(CO, g(c 1) = max H(+L+ 
X Q  zi - 

0 It is easi ly  shown that g is a function, i.e.,  to each E E Em there  is 

one, and only one, ,x E Q- satisfying Eq. 3. One can now associate  to 

each  C E  Em a pdint a E Q by the composite function A 0 g = i, where 

A is the mat r ix  in  Eq. 2. By Lemma 1, a solution to the Q P P  exis t s  
i f  the l inear  equality constraint ,  Eq. 2, i s  replaced by A x = a, for 
all a - Q @  , Consequently, i t  follows from Theorem 1, that f o r e v e r y  

We have proved Thegrem 2. 

0 -  

E a there  ex is t s  a c E Em such that f(s ) = a ;  clear ly ,  f is continuous. 

[ 1 ] H.W. Kuhn and A.W. Tucker, "Nonlinear Programming, It Proc  
Second Berkeley Symposium on Mathematical Stat is t ics  and Probability, 
University of California P r e s s ,  Berkeley, 1951, pp. 481-492. 

I 
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Theorem 2: The mapping f :  Em-@ is continuous and onto, 
then g ( c )  is  the solution to the fur thermore,  if a - = I(:) = ( A  o g )  i, 

QPP: 
- -  

minimize J(x 1 

- encoder 

subject  to 

channel - decoder D 

x - E R ,  
The Q P P  has  now been reduced to inverting the equation 

f ( c  ) = b . A finite s tep algorithm has been developed for  performing 
fhl’s inversion and a computer program has  been writ ten and tes ted on 
seve ra l  problems. Pre l iminary  computational r e su l t s  a r e  favorable. 

Unfortunately, we do not yet have a method for proving that 
a given signal configuration is a local minimum ra the r  than a type of 
saddle point. 
to appear in the next i s sue  of “Notes on System Theory”, ( to  be pub- 
lished as an  E R L  report ,  Spring 1966). 

A m o r e  detailed discussion of these r e su l t s  is expected 

LOWER BOUNDS ON MEAN-SQUARED ERROR 

NASA Grant  NSC- 354 (Supplement 2) 
B. Haskell  (P ro f .  D.J. Sakrison)  

Consider the single parameter  t ransmiss ion  sys tem shown 
above, where the channel has capacity C b i t s / sec .  The mutual infor- 
mation between the input and output pe r  unit t ime is l e s s  than o r  equal 
to C. 
same time minimizing the mean squared e r r o r ,  

We wish to =axirr.ize this t r ansm tted information while a t  the 

4 2  b 2  = j] ( A - A )  p(?/h) p(h)dX 
A 

p(h /h)  is the transit ion probability density function and p(h) is the 
3 pr io r i  density function. 

F o r  a given p(X), define the r a t e  dis tor t ion function as the 
minimum mutual information p o s s i b l e I f t h e  mean-  squ-error i s  
less than o r  equal to D. 

A 
where p ( h / h )  is varied over the c l a s s  defined by 
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If T is the t ime devoted to the t ransmiss ion  of one pa rame te r ,  then 

R(D) - < CT. (4 )  

An equivalent statement i s  that if CT = R(D), then b2 > D. 

this  c lass ,  CT = R1(D) implies that b2 - > D. 

(5 )  
Similarly,  if p(h/X) is  varied over a subclass%f that defined 

by inequality ( 3 )  and R1(D) is obtained, then when using a sys tem in  

(6)  
Consider the -- a p r io r i  density function 

Using statement (6 )  we can  show that for  a PCM sys tem [ 1 ] 

2 1 2-2CT 
6 L 7  , 

and we can find a lower bound on the mean-squared e r r o r  when using 
PAM, PPM,  o r  F S K .  By means of a lower bound on R(D), derived by 
Shannon, we can a l so  show that for any sys tem [ 2 ] 

2 2 2-2CT 6 > -  - ne ( 9 )  

These are plotted in  F ig .  1. 
The PCM lower bound and the absolute lower bound have been 

der ived geometrically for  the case  of gaussian white noise.  
that the bounds can be generalized. (These  r e su l t s  a r e  presented in 
detail  in  the M a s t e r ' s  I1 repor t  by B.G. Haskell, "Pulse Modulation. l ' )  

I t  i s  shown 

[ 1 ] A s imi la r  resu l t  i s  shown by A.  J.  Viterbi, "Maximum SNR for  
Digital Communications:' IEEE Trans .  on Communications Systems 
Vol. CS-12, NO. 1, March, 1964. 

[ 2 1  
of Communication Engineering, to be published, John Wiley and Sons, Inc. 

This resu l t  i s  a l so  derived in Wozencraft and Jacobs,  Pr inc ip les  
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2 Fig .  1. Lower bounds on 6 . 
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